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Why OS Kernel Verification?

• Fundamental, but also simpler to verify!

• Less domain knowledge required
– every programmer knows OS

• Stable specifications

• Slow evolution

• Specs validated by application-level verification

(comparing to applications) 



OS Kernel Verification: Challenges

• Low-level programs
• C + inline assembly, interrupts, task management, …

• Larger code base (than algorithm verification)

• Code at different abstraction layers
• E.g., threads vs. schedulers

• Involves both libraries (sys. calls) and runtime 
(scheduler)

• What is a proper specification?

• Rich concurrency
• Multi-tasking, multi-core, interrupts



kernel-level preemption

Preemption and nested interrupts
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Task B preempts A

Preemptions and multi-level interrupts are crucial for real-time systems.

They also make system highly concurrent and complex

Not fully supported 
in existing work



Concurrency & Preemption in 
Previous work
• seL4 [Klein et al. 2009 …]

• Mostly sequential
• Limited support of interrupts at fixed program points

• Verisoft [Rieden et al. 2007 …]

• Kernel is sequential

• Verve [Yang & Hawblitzel. PLDI 2010]

• Allows preemption, but no nested interrupts
• Mostly about safety, limited functionality verification

• CertiKOS [Gu et al. 2015, Chen et al. 2016, Gu et al. 2016]

• Evolving: sequential  limited interrupts multicore
• Still no preemption



Concurrency & Preemption in 
Previous work (2)
• eChronos OS [Andronick et al. 2015, 2016]

• Supports preemption and nested interrupts

• But verification at the model level only 

• Verifies scheduling invariants, no API correctness



Challenges for Verifying 
Preemptive OS Kernels
• Verifying concurrent programs is difficult

• Non-deterministic interleaving

[Brookes & O’Hearn 2016], courtesy of Ilya Sergey



Challenges for Verifying 
Preemptive OS Kernels
• Verifying concurrent programs is difficult

• Verifying concurrent kernels is
even more challenging

• More difficult to establish refinement with concurrency
• Theories not fully developed until recently

[Turon et al.  POPL’13, ICFP’13] [Liang et al. PLDI’13, CSL-LICS’14]

• Kernel-level preemption can be more complex than
multi-tasking/multi-processor concurrency

A natural correctness 
spec. for OS kernels



Kernel-level preemption can be more complex than 
multi-tasking/multi-processor concurrency
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Interrupt management is now a verification target: 
lower abstraction layer and non-uniform concurrency model

More low-level details: 
e.g., can context switch only when there are no nested interrupts

Task B preempts A



This talk

• Verification framework for preemptive OS kernels

• Refinement reasoning about concurrent kernels

• Multi-Level nested interrupts and preemption

• Verification of key modules of a commercial OS kernel 
μC/OS-II in Coq

The first mechanized verification of 

a commercial preemptive OS kernel.

[Xu et al. CAV’16]



Outline

• OS Correctness Specification

• Verification Framework
• System modeling

• CSL-R: Program logic for refinement & multi-level interrupts

• Coq tactics

• Verifying μC/OS-II



OS Correctness 

• OS provides abstraction for programmers
• Hides details of the underlying hardware 

• Provides an abstract programming model 

• OS Correctness : refinement between high-level 
abstraction and  low-level concrete implementation 



High-Level 
Language

High-Level 
Abstract Primitives

Low-Level Concrete 
Implementations

Applications

C + Abstract primitives

C +Assembly

Low-Level 
Language 

OS Correctness
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Low-Level 

Concrete 

Kernel Impl.


…

For all applications

High-Level

Abstract 

Primitive

Contextual Refinement

System API



Contextual Refinement as OS API Correctness

A：Application  O：Concrete Impl. of OS API

S：Abstract Prim.

O  ctxt S  iff

ObsBeh(A[O])  ObsBeh(A[S])A.

With some 

assumptions about A

The set of observable 

behaviors



Contextual Refinement as OS API Correctness

But OS correctness is more than API correctness:

Correctness of runtime services, e.g., scheduler
(not exported as an API)

Whole system properties, 
e.g., isolation and security, real-time properties, …

Cannot be specified as abstract API primitives! 

How to specify their correctness? 



Runtime services and Sys. Props

Runtime: specified as part of the high-
level language semantics (e.g., scheduling)

Verified through 
refinement



Runtime services and Sys. Props
Whole system properties: 

specified as trace properties of 
all apps (with high-level views) 

Proved at high-level only, 
propagated to low-level 

through 
contextual refinement!



Outline

• OS Correctness Specification

• Verification Framework
• System modeling

• CSL-R: Program logic for refinement & multi-level interrupts

• Coq tactics

• Verifying μC/OS-II



Our Verification Framework
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Our Verification Framework
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The Low-Level Language

L ::= C |   Pr  |  L;L  | …

C Subset

C ::=  while e { C } |  if e { C1 } { C2 } | f(e)  |  e=e | …

e ::=  &e    |   *e   |   e[e]   |   e.id   |   …  



The Low-Level Language

L ::= C |   Pr  |  L;L  | …

Assembly Primitives

Pr ::= encrt  |  excrt  |  switch | …

Explicit interrupts management and context switch



Semantics

Small-step, even for expressions: 
Try to be faithful to the granularity of machine-code

Semantics similar to CompCertTSO [Sevcik et al. 2011]

(but is interleaving semantics instead of TSO model)

eval x
eval y
eval (x+y)
eval (x+y)/2

Interrupt handler:
y = y + 2(x + y)/ 2 



Our Verification Framework
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High-Level Language

H ::= C | S | H;H | ….    

S ::= sched | (v) | S;S | S+S | …

C subset High-level API 
specification language 

explicit 
scheduling points



High-Level Language

H ::= C | S | H;H | ….    

S ::= sched | (v) | S;S | S+S | …

abstract atomic transitions 
(over the abstract kernel states)



Example

void  OSTimeDly (INT16U ticks)

{

if (ticks > 0) {

OS_ENTER_CRITICAL();

……

OS_EXIT_CRITICAL();

OS_Sched();  

}

return;

}

Suspend the current thread, 
and remove it from the 

READY thread queue

__asm__("pushf \n\t cli")

/*Disable interrupts*/

__asm__("popf")

/*Enable  interrupts*/

call scheduler

encrt

excrt



Example

ticks>0;

dly(ticks);

sched

+

ticks <= 0

Low-level Code VS.         High-Level Spec

void  OSTimeDly (INT16U ticks)

{

if (ticks > 0) {

OS_ENTER_CRITICAL();

……

OS_EXIT_CRITICAL();

OS_Sched();                                      

}

return;

}



• Low-level impl. O:  (ηa, θ, ηi)
• ηa : API implementations

• θ : Interrupt handlers

• ηi : Internal functions

• High-level spec. S:  (φ, ε, χ)
• φ : API specs. (high-level primitives for APIs)

• ε :  Abstract events (high-level primitives for int. handlers)

• χ:   Abstract scheduler
• Scheduling policy can be customized by instantiating χ

System Model



• Low-level impl. :  (ηa, θ, ηi)
• ηa : API implementations

• θ : Interrupt handlers

• ηi : Internal functions

• High-level spec.:  (φ, ε, χ)
• φ : API specs. (high-level primitives for APIs)

• ε :  Abstract events (high-level primitives for int. handlers)

• χ:   Abstract scheduler
• Scheduling policy can be customized by instantiating χ

• Shows abstractions for runtime

System Model



System Model

• Low-level impl. O:  (ηa, θ, ηi)
• ηa : API implementations

• θ : Interrupt handlers

• ηi : Internal functions

• High-level spec. S:  (φ, ε, χ)
• φ : API specs. (high-level primitives for APIs)

• ε : Abstract events (high-level primitives for int. handlers)

• χ: Abstract scheduler
• Scheduling policy can be customized by instantiating χ

• Shows abstractions for runtime

Verification goal:

(ηa, θ, ηi) ctxt (φ, ε, χ)



Outline

• OS Correctness Specification

• Verification Framework
• System modeling

• CSL-R: Program logic for refinement & multi-level interrupts

• Coq tactics

• Verifying μC/OS-II
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Program Logic for 
Refinement and Multi-Level Interrupts

• Relational program logic for simulation/refinements

• Ownership-Transfer semantics for interrupts

• Combining the two: CSL-R for refinement reasoning 
with multi-level interrupts

[Liang et al. PLDI’13, CSL-LICS’14]

[Feng et al. PLDI’08]



Refinement Verification via Simulation

call ret
Low (A[O]):

call, ret
High (A[S]):

e

e

    

S

O



call ret

Low (A[O]):

call, ret
High (A[S]):

e

e

Interrupt handler:

Another task:

IRQ iret

switch switch

 ? ?

How to do compositional verification?

S
O

Simulation with Interrupts & Multitasking



call ret

Low (A[O]):

call, ret
High (A[S]):

e

e

Interrupt handler:

Another task:

IRQ iret

switch switch

 

Use invariant “I” to

specify non-deterministic 

interference

S
O

Simulation with Interrupts & Multitasking



Simulation with Interrupts & Multitasking

call ret
Low (A[O]):

call, ret
High (A[S]):

e

e

 II

Env. steps

I I I I

Adapted from RGSim [Liang et al. POPL’12] and 

the relational program logic [Liang et al. PLDI’13, CSL-LICS’14] 



Program Logic for Simulation

S

C
Low-Level 

concrete states
Low-Level 

concrete code

High-Level 

abstract states

High-Level 

abstract primtive



x … z



Program Logic for Simulation

S

C
Low-Level 

concrete states
Low-Level 

concrete code

High-Level 

abstract states

High-Level 

abstract primtive



x … z

• Judgement

{   *       }     {   * [|end|] }C[|S|]I p q

Remaining high-level code 
that needs to be refined



Program Logic for Simulation

S

C
Low-Level 

concrete states
Low-Level 

concrete code

High-Level 

abstract states

High-Level 

abstract primtive



x … z

• Judgement

{   *       }     {   * [|end|] }C[|S|]I p q

No remaining high-level 
code (refinement is done)



Program Logic for Simulation

S

C
Low-Level 

concrete states
Low-Level 

concrete code

High-Level 

abstract states

High-Level 

abstract primtive



x … z

• Judgement

{   *       }     {   * [|end|] }C[|S|]I p q

Relational assertions for
pre-/post- condition



Program Logic for Simulation

S

C
Low-Level 

concrete states
Low-Level 

concrete code

High-Level 

abstract states

High-Level 

abstract primtive



x … z

• Judgement

{   *       }     {   * [|end|] }C[|S|]I p q

Relational Invariants 



Soundness

If

{   *       }     {   * [|end|] }C[|S|]I p q

then C is simulated by S, …



void Add() {

OS_ENTER_CRITICAL();

Count ++ ;

OS_EXIT_CRITICAL();

}

An Example

< CNT++ >

I ::= v. Count→ v  * CNT=v



An Example

OS_ENTER_CRITICAL();

Count ++ ;

OS_EXIT_CRITICAL();

{  [< CNT++ > ]  }

{ [<end>] }

{  [< CNT++ > ]  * I }

{ [< CNT++ > ] * Count→ v  * CNT=v }

{ [< CNT++ > ] * Count→ v+1  * CNT=v}

{ [< end> ] * Count→ v+1  * CNT=v+1}

{ [< end> ]  * I }

Ownership transfer

Unfold I

Execute high-level code

Fold I

Ownership transfer



An Example

OS_ENTER_CRITICAL();

Count ++ ;

OS_EXIT_CRITICAL();

{  [< CNT++ > ]  }

{ [<end>] }

The code refines 
<CNT++>



An Example

OS_ENTER_CRITICAL();

Count ++ ;

OS_EXIT_CRITICAL();

{  [< CNT++ > ]  }

{ [<end>] }

{ [< CNT++ > ] * Count→ v+1  * CNT=v}

{ [< end> ] * Count→ v+1  * CNT=v+1}

Execute high-level code

{ [< CNT++ > ] * Count→ v  * CNT=v }



An Example

OS_ENTER_CRITICAL();

Count ++ ;

OS_EXIT_CRITICAL();

{  [< CNT++ > ]  }

{ [<end>] }

{ [< CNT++ > ] * Count→ v+1  * CNT=v}

{ [< end> ] * Count→ v+1  * CNT=v+1}

Execute high-level code

{ p * [S] } C { q }

p*[S] ==> r* [S’] { r * [S’] } C { q }

Abstract consequence rule:

p ==> q iff (, , S) |= p,

 (’, S’). (, S) * (’, S’)

 (, ’, S’) |= q,



An Example

OS_ENTER_CRITICAL();

Count ++ ;

OS_EXIT_CRITICAL();

{  [< CNT++ > ]  }

{ [<end>] }

{  [< CNT++ > ]  * I }

{ [< end> ]  * I }

Ownership transfer

Ownership transfer

Interrupt reasoning



Program invariant  [O'Hearn CONCUR’04]

There is always a partition of resource among concurrent entities, and each 
concurrent entity only accesses its own part.

But note:

The partition is dynamic: ownership of resource can be dynamically 
transferred.

Interrupt operations can be modeled as operations that trigger resource 
ownership transfer. [Feng et al. PLDI’08]

Interrupt Reasoning

Tasks and interrupt 
handlers 



Ownership-Transfer Semantics 
for Single-Level Interrupt

B1 B0

I0

B1 B0

I0

B1 B0

I0

B0

I0

B1

cli

sti

IF = 1 IF = 0

I0 {p} cli {p * I0} I0    {p * I0} sti {p}

Resource

Handler 0 Task

Interrupt 
enabled

Interrupt 
disabled



Memory Model for Multi-Level Interrupts

• Higher-priority handler has priority to select its required resource

• N blocks are assigned to N interrupt handlers

• Each well-formed resource block is specified by a resource invariant

I0

0 

BN-1

IN-1

N-1

BN

IN

Task

Lowest Priority Highest Priority 

B0

I1

B1

1 

B2

I2

2 

…

…

…

Resource



Ownership-Transfer Semantics for 
Multi-Level Interrupts

IF=1

ISR = [1 0 1 0 0 0]

B0B1B2B3B4B5T

IF=0

ISR = [1 0 1 0 0 0]

B0B1B2B3B4B5T

cli sti

IF=0

ISR = [1 0 0 0 0 0]

B0B1B2B3B4B5T

cli sti iret

eoi

eoi

iret

IF=0

ISR = [1 0 1 0 1 0]

B0B1B2B3B4B5T

IF=1

ISR = [1 0 0 0 0 0]

B0B1B2B3B4B5T

[8259A interrupt controller]



IF=1

ISR = [1 0 1 0 0 0]

B0B1B2B3B4B5T

IF=0

ISR = [1 0 1 0 0 0]

B0B1B2B3B4B5T

cli

I { [ISR, 1, k] * p } cli { [ISR,  ,k]*  p * }

ISR(k) = 1

I [0… k-1]0

Inference Rules for 
Interrupt Operations 



Top Rule for Proving  O  ctxt S 

Γ, χ, I     ηa :φχ, I ηi : Γ Γ, χ, I θ : ε

O  ctxt S 

(ηa, θ, ηi) (φ, ε, χ)

Side 

conditions

Verifying internal 

functions

Verifying interrupt 

handlers 

Verifying kernel 

APIs

kernel APIs

internal functionsinterrupt handlers abstract primitives for 

interrupt handlers

abstract primitivesfor kernel 

APIs

abstract scheduler



Outline

• OS Correctness Specification

• Verification Framework
• System modeling

• CSL-R: Program logic for refinement & multi-level interrupts

• Coq tactics

• Verifying μC/OS-II
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Coq Tactics for Automation Support

• Verification condition generator : hoare forward
• Automatically select and apply the inference rules

• Assertion entailment prover : sep auto
• Automatically prove “p => q”

• Domain specific solvers : mauto  …



Coq Tactics for Automation Support

• To reduce the proof efforts

• To hide the underlying details of the verification 
framework

• To prove domain specific propositions 

The ratio of Coq scripts to the verified C is around 27:1

lots of space for improvement



Outline

• OS Correctness Specification

• Verification Framework
• System modeling

• CSL-R: Program logic for refinement & multi-level interrupts

• Coq tactics

• Verifying μC/OS-II



μC/OS-II

• A commercial preemptive real-time multitasking OS kernel 
developed by Micrium.

• 6,316 lines of C & 316 lines of assembly code.

• Multitasking & Multi-Level interrupts & Preemptive priority-
based scheduling & Synchronization mechanism

• Deployed in many real-world safety critical applications
• Avionics and medical equipments, etc.



Verifying μC/OS-II

C. Coq 
Tactics

B. Refinement-Based Verification

A. Modeling of OS Kernels

D. Verifying key modules of μC/OS-II

Multi-level
Interrupts

Priority-
Based 

Scheduler Synchronization Mechanisms

Message 
Queue

Mutex
Sema-
phore

Mail 
Box

Refinement-Based Verification Framework

Task
Mana.



Frequently Used APIs：



main

OSInit

OSStart

OS_MemInit

OS_QInit

OS_FlagInit

OS_InitMisc

OS_InitRdyList

OS_InitTCBList

OS_InitEventList

OS_InitIdleTask

OS_InitStatTask

OS_TCBInit

OS_TaskStat

OS_TaskIdle

User Task

OSTaskCreate OSTaskDelOSTaskChangePrioOSTaskCreateExt OSTaskSusPend OSTaskResume OSTaskStkChk

OSSemCreate OSSemDel OSSemAccept OSSemPend OSSemPost OSSemQuery

OSMboxCreate OSMboxDel OSMboxAccept OSMboxPend OSMboxPost OSMboxPostOpt

OSQCreate OSQDel OSQAccept OSQPend OSQPost OSQPostFront OSQPostOpt

OSQQueryOSMutexCreate OSMutexDel OSMutexAccept OSMutexPend OSMutexPost OSMutexQuery

OSFlagCreate OSFlagDel OSFlagAccept OSFlagPend OSFlagPost OSFlagQuery

OSMemCreate OSMemGet OSMemPut OSMemQuery

OSSchedLock OSSchedUnlock

OSTickISR

OS_IntExit

OSTimeTick

OS_Sched OS_EventTaskWait OS_EventTaskRdyOS_EventTO

OSVersion

OS_IntEnter

Initialization

Timer

Interrupt

Key Internal Functions 

Kernel APIs 

OSTimeDly OSTimeDlyResume OSTimeGetOSTimeDlyHMSM OSTimeSet

OSMboxQuery

OS_EventWaitListInit

Verified APIs：

covers 68% of the frequently used APIsTimer interrupt 

handler

Scheduler

Semaphore

Mailbox

Time management
Mutex

Message 

queue

Task 

management



Proving Priority Inversion Freedom

High-Level
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Relational 
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Verification 
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Generator
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…

PIF of Mutex

Priority inversion 
freedom of mutex in 

μC/OS-II



Bugs found in μC/OS-II

• Priority Inversion Freedom in Mutex
• Use a simplified priority ceiling protocol



Limitation of Mutex

Mutual exclusion semaphores with built-in priority 

ceiling protocol to prevent priority inversions



Bugs found in μC/OS-II

• Priority Inversion Freedom in Mutex
• Use a simplified priority ceiling protocol

• May cause priority inversion with nested use of mutex!

• Fixed in μC/OS-III

• Concurrency bug (atomicity violation)

• May lead to access of invalid pointers

• Found in μC/OS-II  v2.52 (the version we verified)

• Fixed in μC/OS-II  v2.9

INT8U  OSTaskChangePrio (INT8U oldprio, INT8U newprio)



Coq Implementations

CertiOS

framework

machine simulation logic theory

tactics certiucos

code spec proofs

55,000 20,000

225,000

150,000



Time cost: 6 person-years

Components Cost (py)

Basic framework design and impl. 4

First module: message queue（750 lines of C） 1

the other modules（3000 loc） 1

total 6

http://staff.ustc.edu.cn/~fuming/research/certiucos/

Debugging and fixing framework, 
specifications, tactics, etc.

Verification can be much faster with 
stable framework, tools and libraries



Conclusion

• Contextual refinements: 
a natural correctness formulation for OS kernels

• Verification framework for preemptive kernels
• CSL-R: Concurrency refinement + hardware interrupts

• Verification of μC/OS-II
• Commercial system independently developed by third-party



Limitations & Future Work

• No termination proofs
• Relatively simple, can be done in logic or using tools

• Assembly and compiler are not verified
• Ongoing work

• No separate addr. space and isolation

• No real-time properties

• More whole-system properties, in addition to PIF

• Improvements for automation (better tools and libs)
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