
Mechanized Verification of
Preemptive OS Kernels

Xinyu Feng

University of Science and Technology of China

Why OS Kernel Verification?

Computer Systems

Why OS Kernel Verification?

Hardware

Operating Systems

Applications

Correctness of OS is crucial for safety

and security of the whole system

Why OS Kernel Verification?

• Fundamental, but also simpler to verify!

• Less domain knowledge required
– every programmer knows OS

• Stable specifications

• Slow evolution

• Specs validated by application-level verification

(comparing to applications)

OS Kernel Verification: Challenges

• Low-level programs
• C + inline assembly, interrupts, task management, …

• Larger code base (than algorithm verification)

• Code at different abstraction layers
• E.g., threads vs. schedulers

• Involves both libraries (sys. calls) and runtime
(scheduler)

• What is a proper specification?

• Rich concurrency
• Multi-tasking, multi-core, interrupts

kernel-level preemption

Preemption and nested interrupts

. . .

. . .

cli
. . .

switch
. . .

sti
. . .

Task A

iret

. . .

Handler 0

. . .

. . .

cli
. . .

switch
. . .

sti
. . .

Task B

. . .

sti

Handler 1

. . .

cli

. . .

switch

. . .

iret

nested multi-level

interrupts

Task B preempts A

Preemptions and multi-level interrupts are crucial for real-time systems.

They also make system highly concurrent and complex

Not fully supported
in existing work

Concurrency & Preemption in
Previous work
• seL4 [Klein et al. 2009 …]

• Mostly sequential
• Limited support of interrupts at fixed program points

• Verisoft [Rieden et al. 2007 …]

• Kernel is sequential

• Verve [Yang & Hawblitzel. PLDI 2010]

• Allows preemption, but no nested interrupts
• Mostly about safety, limited functionality verification

• CertiKOS [Gu et al. 2015, Chen et al. 2016, Gu et al. 2016]

• Evolving: sequential  limited interrupts multicore
• Still no preemption

Concurrency & Preemption in
Previous work (2)
• eChronos OS [Andronick et al. 2015, 2016]

• Supports preemption and nested interrupts

• But verification at the model level only

• Verifies scheduling invariants, no API correctness

Challenges for Verifying
Preemptive OS Kernels
• Verifying concurrent programs is difficult

• Non-deterministic interleaving

[Brookes & O’Hearn 2016], courtesy of Ilya Sergey

Challenges for Verifying
Preemptive OS Kernels
• Verifying concurrent programs is difficult

• Verifying concurrent kernels is
even more challenging

• More difficult to establish refinement with concurrency
• Theories not fully developed until recently

[Turon et al. POPL’13, ICFP’13] [Liang et al. PLDI’13, CSL-LICS’14]

• Kernel-level preemption can be more complex than
multi-tasking/multi-processor concurrency

A natural correctness
spec. for OS kernels

Kernel-level preemption can be more complex than
multi-tasking/multi-processor concurrency

. . .

. . .

cli
. . .

switch
. . .

sti
. . .

Task A

iret

. . .

Handler 0

. . .

. . .

cli
. . .

switch
. . .

sti
. . .

Task B

. . .

sti

Handler 1

. . .

cli

. . .

switch

. . .

iret

Interrupt management is now a verification target:
lower abstraction layer and non-uniform concurrency model

More low-level details:
e.g., can context switch only when there are no nested interrupts

Task B preempts A

This talk

• Verification framework for preemptive OS kernels

• Refinement reasoning about concurrent kernels

• Multi-Level nested interrupts and preemption

• Verification of key modules of a commercial OS kernel
μC/OS-II in Coq

The first mechanized verification of

a commercial preemptive OS kernel.

[Xu et al. CAV’16]

Outline

• OS Correctness Specification

• Verification Framework
• System modeling

• CSL-R: Program logic for refinement & multi-level interrupts

• Coq tactics

• Verifying μC/OS-II

OS Correctness

• OS provides abstraction for programmers
• Hides details of the underlying hardware

• Provides an abstract programming model

• OS Correctness : refinement between high-level
abstraction and low-level concrete implementation

High-Level
Language

High-Level
Abstract Primitives

Low-Level Concrete
Implementations

Applications

C + Abstract primitives

C +Assembly

Low-Level
Language

OS Correctness

High-Level

Abstract

Primitive

Applications
Low-Level

Concrete

Kernel Impl.


Refinement

System API

Low-Level

Concrete

Kernel Impl.


…

For all applications

High-Level

Abstract

Primitive

Contextual Refinement

System API

Contextual Refinement as OS API Correctness

A：Application O：Concrete Impl. of OS API

S：Abstract Prim.

O ctxt S iff

ObsBeh(A[O])  ObsBeh(A[S])A.

With some

assumptions about A

The set of observable

behaviors

Contextual Refinement as OS API Correctness

But OS correctness is more than API correctness:

Correctness of runtime services, e.g., scheduler
(not exported as an API)

Whole system properties,
e.g., isolation and security, real-time properties, …

Cannot be specified as abstract API primitives!

How to specify their correctness?

Runtime services and Sys. Props

Runtime: specified as part of the high-
level language semantics (e.g., scheduling)

Verified through
refinement

Runtime services and Sys. Props
Whole system properties:

specified as trace properties of
all apps (with high-level views)

Proved at high-level only,
propagated to low-level

through
contextual refinement!

Outline

• OS Correctness Specification

• Verification Framework
• System modeling

• CSL-R: Program logic for refinement & multi-level interrupts

• Coq tactics

• Verifying μC/OS-II

Our Verification Framework

High-Level
Spec. Language

C Subset
Assembly
Primitives

Low-Level Operational Semantics
with Context Switch and Interrupts

High-Level Operational Semantics
with Configurable Schedulers

High-Level Language

Low-Level Language

CSL-Style Refinement-Based
Program Logic

Contextual
Refinement

B. Refinement-Based Verification

Refinement-Based Verification Framework

A. Modeling of
OS KernelsC. Coq

Tactics

Relational
Assertion

Entailment

Verification
Condition
Generator

Domain-
Specific
Solvers

…

High-Level
Language

High-Level
Abstract Primitives

Low-Level Concrete
Implementations

Applications

Low-Level
Language

OS Correctness


Our Verification Framework

High-Level
Spec. Language

C Subset
Assembly
Primitives

Low-Level Operational Semantics
with Context Switch and Interrupts

High-Level Operational Semantics
with Configurable Schedulers

High-Level Language

Low-Level Language

CSL-Style Refinement-Based
Program Logic

Contextual
Refinement

B. Refinement-Based Verification

Refinement-Based Verification Framework

A. Modeling of
OS KernelsC. Coq

Tactics

Relational
Assertion

Entailment

Verification
Condition
Generator

Domain-
Specific
Solvers

…

The Low-Level Language

L ::= C | Pr | L;L | …

C Subset

C ::= while e { C } | if e { C1 } { C2 } | f(e) | e=e | …

e ::= &e | *e | e[e] | e.id | …

The Low-Level Language

L ::= C | Pr | L;L | …

Assembly Primitives

Pr ::= encrt | excrt | switch | …

Explicit interrupts management and context switch

Semantics

Small-step, even for expressions:
Try to be faithful to the granularity of machine-code

Semantics similar to CompCertTSO [Sevcik et al. 2011]

(but is interleaving semantics instead of TSO model)

eval x
eval y
eval (x+y)
eval (x+y)/2

Interrupt handler:
y = y + 2(x + y)/ 2

Our Verification Framework

High-Level
Spec. Language

C Subset
Assembly
Primitives

Low-Level Operational Semantics
with Context Switch and Interrupts

High-Level Operational Semantics
with Configurable Schedulers

High-Level Language

Low-Level Language

CSL-Style Refinement-Based
Program Logic

Contextual
Refinement

B. Refinement-Based Verification

Refinement-Based Verification Framework

A. Modeling of
OS KernelsC. Coq

Tactics

Relational
Assertion

Entailment

Verification
Condition
Generator

Domain-
Specific
Solvers

…

High-Level Language

H ::= C | S | H;H | ….

S ::= sched | (v) | S;S | S+S | …

C subset High-level API
specification language

explicit
scheduling points

High-Level Language

H ::= C | S | H;H | ….

S ::= sched | (v) | S;S | S+S | …

abstract atomic transitions
(over the abstract kernel states)

Example

void OSTimeDly (INT16U ticks)

{

if (ticks > 0) {

OS_ENTER_CRITICAL();

……

OS_EXIT_CRITICAL();

OS_Sched();

}

return;

}

Suspend the current thread,
and remove it from the

READY thread queue

__asm__("pushf \n\t cli")

/*Disable interrupts*/

__asm__("popf")

/*Enable interrupts*/

call scheduler

encrt

excrt

Example

ticks>0;

dly(ticks);

sched

+

ticks <= 0

Low-level Code VS. High-Level Spec

void OSTimeDly (INT16U ticks)

{

if (ticks > 0) {

OS_ENTER_CRITICAL();

……

OS_EXIT_CRITICAL();

OS_Sched();

}

return;

}

• Low-level impl. O: (ηa, θ, ηi)
• ηa : API implementations

• θ : Interrupt handlers

• ηi : Internal functions

• High-level spec. S: (φ, ε, χ)
• φ : API specs. (high-level primitives for APIs)

• ε : Abstract events (high-level primitives for int. handlers)

• χ: Abstract scheduler
• Scheduling policy can be customized by instantiating χ

System Model

• Low-level impl. : (ηa, θ, ηi)
• ηa : API implementations

• θ : Interrupt handlers

• ηi : Internal functions

• High-level spec.: (φ, ε, χ)
• φ : API specs. (high-level primitives for APIs)

• ε : Abstract events (high-level primitives for int. handlers)

• χ: Abstract scheduler
• Scheduling policy can be customized by instantiating χ

• Shows abstractions for runtime

System Model

System Model

• Low-level impl. O: (ηa, θ, ηi)
• ηa : API implementations

• θ : Interrupt handlers

• ηi : Internal functions

• High-level spec. S: (φ, ε, χ)
• φ : API specs. (high-level primitives for APIs)

• ε : Abstract events (high-level primitives for int. handlers)

• χ: Abstract scheduler
• Scheduling policy can be customized by instantiating χ

• Shows abstractions for runtime

Verification goal:

(ηa, θ, ηi) ctxt (φ, ε, χ)

Outline

• OS Correctness Specification

• Verification Framework
• System modeling

• CSL-R: Program logic for refinement & multi-level interrupts

• Coq tactics

• Verifying μC/OS-II

Our Verification Framework

High-Level
Spec. Language

C Subset
Assembly
Primitives

Low-Level Operational Semantics
with Context Switch and Interrupts

High-Level Operational Semantics
with Configurable Schedulers

High-Level Language

Low-Level Language

CSL-Style Refinement-Based
Program Logic

Contextual
Refinement

B. Refinement-Based Verification

Refinement-Based Verification Framework

A. Modeling of
OS KernelsC. Coq

Tactics

Relational
Assertion

Entailment

Verification
Condition
Generator

Domain-
Specific
Solvers

…

Program Logic for
Refinement and Multi-Level Interrupts

• Relational program logic for simulation/refinements

• Ownership-Transfer semantics for interrupts

• Combining the two: CSL-R for refinement reasoning
with multi-level interrupts

[Liang et al. PLDI’13, CSL-LICS’14]

[Feng et al. PLDI’08]

Refinement Verification via Simulation

call ret
Low (A[O]):

call, ret
High (A[S]):

e

e

    

S

O

call ret

Low (A[O]):

call, ret
High (A[S]):

e

e

Interrupt handler:

Another task:

IRQ iret

switch switch

 ? ?

How to do compositional verification?

S
O

Simulation with Interrupts & Multitasking

call ret

Low (A[O]):

call, ret
High (A[S]):

e

e

Interrupt handler:

Another task:

IRQ iret

switch switch

 

Use invariant “I” to

specify non-deterministic

interference

S
O

Simulation with Interrupts & Multitasking

Simulation with Interrupts & Multitasking

call ret
Low (A[O]):

call, ret
High (A[S]):

e

e

 II

Env. steps

I I I I

Adapted from RGSim [Liang et al. POPL’12] and

the relational program logic [Liang et al. PLDI’13, CSL-LICS’14]

Program Logic for Simulation

S

C
Low-Level

concrete states
Low-Level

concrete code

High-Level

abstract states

High-Level

abstract primtive



x … z

Program Logic for Simulation

S

C
Low-Level

concrete states
Low-Level

concrete code

High-Level

abstract states

High-Level

abstract primtive



x … z

• Judgement

{ * } { * [|end|] }C[|S|]I p q

Remaining high-level code
that needs to be refined

Program Logic for Simulation

S

C
Low-Level

concrete states
Low-Level

concrete code

High-Level

abstract states

High-Level

abstract primtive



x … z

• Judgement

{ * } { * [|end|] }C[|S|]I p q

No remaining high-level
code (refinement is done)

Program Logic for Simulation

S

C
Low-Level

concrete states
Low-Level

concrete code

High-Level

abstract states

High-Level

abstract primtive



x … z

• Judgement

{ * } { * [|end|] }C[|S|]I p q

Relational assertions for
pre-/post- condition

Program Logic for Simulation

S

C
Low-Level

concrete states
Low-Level

concrete code

High-Level

abstract states

High-Level

abstract primtive



x … z

• Judgement

{ * } { * [|end|] }C[|S|]I p q

Relational Invariants

Soundness

If

{ * } { * [|end|] }C[|S|]I p q

then C is simulated by S, …

void Add() {

OS_ENTER_CRITICAL();

Count ++ ;

OS_EXIT_CRITICAL();

}

An Example

< CNT++ >

I ::= v. Count→ v * CNT=v

An Example

OS_ENTER_CRITICAL();

Count ++ ;

OS_EXIT_CRITICAL();

{ [< CNT++ >] }

{ [<end>] }

{ [< CNT++ >] * I }

{ [< CNT++ >] * Count→ v * CNT=v }

{ [< CNT++ >] * Count→ v+1 * CNT=v}

{ [< end>] * Count→ v+1 * CNT=v+1}

{ [< end>] * I }

Ownership transfer

Unfold I

Execute high-level code

Fold I

Ownership transfer

An Example

OS_ENTER_CRITICAL();

Count ++ ;

OS_EXIT_CRITICAL();

{ [< CNT++ >] }

{ [<end>] }

The code refines
<CNT++>

An Example

OS_ENTER_CRITICAL();

Count ++ ;

OS_EXIT_CRITICAL();

{ [< CNT++ >] }

{ [<end>] }

{ [< CNT++ >] * Count→ v+1 * CNT=v}

{ [< end>] * Count→ v+1 * CNT=v+1}

Execute high-level code

{ [< CNT++ >] * Count→ v * CNT=v }

An Example

OS_ENTER_CRITICAL();

Count ++ ;

OS_EXIT_CRITICAL();

{ [< CNT++ >] }

{ [<end>] }

{ [< CNT++ >] * Count→ v+1 * CNT=v}

{ [< end>] * Count→ v+1 * CNT=v+1}

Execute high-level code

{ p * [S] } C { q }

p*[S] ==> r* [S’] { r * [S’] } C { q }

Abstract consequence rule:

p ==> q iff (, , S) |= p,

 (’, S’). (, S) * (’, S’)

 (, ’, S’) |= q,

An Example

OS_ENTER_CRITICAL();

Count ++ ;

OS_EXIT_CRITICAL();

{ [< CNT++ >] }

{ [<end>] }

{ [< CNT++ >] * I }

{ [< end>] * I }

Ownership transfer

Ownership transfer

Interrupt reasoning

Program invariant [O'Hearn CONCUR’04]

There is always a partition of resource among concurrent entities, and each
concurrent entity only accesses its own part.

But note:

The partition is dynamic: ownership of resource can be dynamically
transferred.

Interrupt operations can be modeled as operations that trigger resource
ownership transfer. [Feng et al. PLDI’08]

Interrupt Reasoning

Tasks and interrupt
handlers

Ownership-Transfer Semantics
for Single-Level Interrupt

B1 B0

I0

B1 B0

I0

B1 B0

I0

B0

I0

B1

cli

sti

IF = 1 IF = 0

I0 {p} cli {p * I0} I0 {p * I0} sti {p}

Resource

Handler 0 Task

Interrupt
enabled

Interrupt
disabled

Memory Model for Multi-Level Interrupts

• Higher-priority handler has priority to select its required resource

• N blocks are assigned to N interrupt handlers

• Each well-formed resource block is specified by a resource invariant

I0

0

BN-1

IN-1

N-1

BN

IN

Task

Lowest Priority Highest Priority

B0

I1

B1

1

B2

I2

2

…

…

…

Resource

Ownership-Transfer Semantics for
Multi-Level Interrupts

IF=1

ISR = [1 0 1 0 0 0]

B0B1B2B3B4B5T

IF=0

ISR = [1 0 1 0 0 0]

B0B1B2B3B4B5T

cli sti

IF=0

ISR = [1 0 0 0 0 0]

B0B1B2B3B4B5T

cli sti iret

eoi

eoi

iret

IF=0

ISR = [1 0 1 0 1 0]

B0B1B2B3B4B5T

IF=1

ISR = [1 0 0 0 0 0]

B0B1B2B3B4B5T

[8259A interrupt controller]

IF=1

ISR = [1 0 1 0 0 0]

B0B1B2B3B4B5T

IF=0

ISR = [1 0 1 0 0 0]

B0B1B2B3B4B5T

cli

I { [ISR, 1, k] * p } cli { [ISR, ,k]* p * }

ISR(k) = 1

I [0… k-1]0

Inference Rules for
Interrupt Operations

Top Rule for Proving O ctxt S

Γ, χ, I ηa :φχ, I ηi : Γ Γ, χ, I θ : ε

O ctxt S

(ηa, θ, ηi) (φ, ε, χ)

Side

conditions

Verifying internal

functions

Verifying interrupt

handlers

Verifying kernel

APIs

kernel APIs

internal functionsinterrupt handlers abstract primitives for

interrupt handlers

abstract primitivesfor kernel

APIs

abstract scheduler

Outline

• OS Correctness Specification

• Verification Framework
• System modeling

• CSL-R: Program logic for refinement & multi-level interrupts

• Coq tactics

• Verifying μC/OS-II

Our Verification Framework

High-Level
Spec. Language

C Subset
Assembly
Primitives

Low-Level Operational Semantics
with Context Switch and Interrupts

High-Level Operational Semantics
with Configurable Schedulers

High-Level Language

Low-Level Language

CSL-Style Refinement-Based
Program Logic

Contextual
Refinement

B. Refinement-Based Verification

Refinement-Based Verification Framework

A. Modeling of
OS KernelsC. Coq

Tactics

Relational
Assertion

Entailment

Verification
Condition
Generator

Domain-
Specific
Solvers

…

Coq Tactics for Automation Support

• Verification condition generator : hoare forward
• Automatically select and apply the inference rules

• Assertion entailment prover : sep auto
• Automatically prove “p => q”

• Domain specific solvers : mauto …

Coq Tactics for Automation Support

• To reduce the proof efforts

• To hide the underlying details of the verification
framework

• To prove domain specific propositions

The ratio of Coq scripts to the verified C is around 27:1

lots of space for improvement

Outline

• OS Correctness Specification

• Verification Framework
• System modeling

• CSL-R: Program logic for refinement & multi-level interrupts

• Coq tactics

• Verifying μC/OS-II

μC/OS-II

• A commercial preemptive real-time multitasking OS kernel
developed by Micrium.

• 6,316 lines of C & 316 lines of assembly code.

• Multitasking & Multi-Level interrupts & Preemptive priority-
based scheduling & Synchronization mechanism

• Deployed in many real-world safety critical applications
• Avionics and medical equipments, etc.

Verifying μC/OS-II

C. Coq
Tactics

B. Refinement-Based Verification

A. Modeling of OS Kernels

D. Verifying key modules of μC/OS-II

Multi-level
Interrupts

Priority-
Based

Scheduler Synchronization Mechanisms

Message
Queue

Mutex
Sema-
phore

Mail
Box

Refinement-Based Verification Framework

Task
Mana.

Frequently Used APIs：

main

OSInit

OSStart

OS_MemInit

OS_QInit

OS_FlagInit

OS_InitMisc

OS_InitRdyList

OS_InitTCBList

OS_InitEventList

OS_InitIdleTask

OS_InitStatTask

OS_TCBInit

OS_TaskStat

OS_TaskIdle

User Task

OSTaskCreate OSTaskDelOSTaskChangePrioOSTaskCreateExt OSTaskSusPend OSTaskResume OSTaskStkChk

OSSemCreate OSSemDel OSSemAccept OSSemPend OSSemPost OSSemQuery

OSMboxCreate OSMboxDel OSMboxAccept OSMboxPend OSMboxPost OSMboxPostOpt

OSQCreate OSQDel OSQAccept OSQPend OSQPost OSQPostFront OSQPostOpt

OSQQueryOSMutexCreate OSMutexDel OSMutexAccept OSMutexPend OSMutexPost OSMutexQuery

OSFlagCreate OSFlagDel OSFlagAccept OSFlagPend OSFlagPost OSFlagQuery

OSMemCreate OSMemGet OSMemPut OSMemQuery

OSSchedLock OSSchedUnlock

OSTickISR

OS_IntExit

OSTimeTick

OS_Sched OS_EventTaskWait OS_EventTaskRdyOS_EventTO

OSVersion

OS_IntEnter

Initialization

Timer

Interrupt

Key Internal Functions

Kernel APIs

OSTimeDly OSTimeDlyResume OSTimeGetOSTimeDlyHMSM OSTimeSet

OSMboxQuery

OS_EventWaitListInit

Verified APIs：

covers 68% of the frequently used APIsTimer interrupt

handler

Scheduler

Semaphore

Mailbox

Time management
Mutex

Message

queue

Task

management

Proving Priority Inversion Freedom

High-Level
Spec. Language

C Subset
Assembly
Primitives

Low-Level Operational Semantics
with Context Switch and Interrupts

High-Level Operational Semantics
with Configurable Schedulers

High-Level Language

Low-Level Language

CSL-Style Refinement-Based
Program Logic

Contextual
Refinement

B. Refinement-Based Verification

Refinement-Based Verification Framework

A. Modeling of
OS KernelsC. Coq

Tactics

Relational
Assertion

Entailment

Verification
Condition
Generator

Domain-
Specific
Solvers

…

PIF of Mutex

Priority inversion
freedom of mutex in

μC/OS-II

Bugs found in μC/OS-II

• Priority Inversion Freedom in Mutex
• Use a simplified priority ceiling protocol

Limitation of Mutex

Mutual exclusion semaphores with built-in priority

ceiling protocol to prevent priority inversions

Bugs found in μC/OS-II

• Priority Inversion Freedom in Mutex
• Use a simplified priority ceiling protocol

• May cause priority inversion with nested use of mutex!

• Fixed in μC/OS-III

• Concurrency bug (atomicity violation)

• May lead to access of invalid pointers

• Found in μC/OS-II v2.52 (the version we verified)

• Fixed in μC/OS-II v2.9

INT8U OSTaskChangePrio (INT8U oldprio, INT8U newprio)

Coq Implementations

CertiOS

framework

machine simulation logic theory

tactics certiucos

code spec proofs

55,000 20,000

225,000

150,000

Time cost: 6 person-years

Components Cost (py)

Basic framework design and impl. 4

First module: message queue（750 lines of C） 1

the other modules（3000 loc） 1

total 6

http://staff.ustc.edu.cn/~fuming/research/certiucos/

Debugging and fixing framework,
specifications, tactics, etc.

Verification can be much faster with
stable framework, tools and libraries

Conclusion

• Contextual refinements:
a natural correctness formulation for OS kernels

• Verification framework for preemptive kernels
• CSL-R: Concurrency refinement + hardware interrupts

• Verification of μC/OS-II
• Commercial system independently developed by third-party

Limitations & Future Work

• No termination proofs
• Relatively simple, can be done in logic or using tools

• Assembly and compiler are not verified
• Ongoing work

• No separate addr. space and isolation

• No real-time properties

• More whole-system properties, in addition to PIF

• Improvements for automation (better tools and libs)

Acknowledgments: Group Members
Ming Fu

Hui Zhang Ding Ma Haibo Gu

Xiaoran Zhang Zhaohui LiFengwei Xu

Alumni: Jingyuan Cao, Jiebo Ma

Thank you!

