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Why OS Kernel Verification?




Why OS Kernel Verification?

Correctness of OS is crucial for safety
and security of the whole system



Why OS Kernel Verification?

 Fundamental, but also simpler to verify!
(comparing to applications)

Less domain knowledge required
— every programmer knows OS

Stable specifications
Slow evolution
Specs validated by application-level verification



OS Kernel Verification: Challenges

* Low-level programs
* C+inline assembly, interrupts, task management, ...

 Larger code base (than algorithm verification)

* Code at different abstraction layers
* E.g., threads vs. schedulers

* Involves both libraries (sys. calls) and runtime
(scheduler)
 What is a proper specification?

* Rich concurrency
* Multi-tasking, multi-core, interrupts



Preemption and nested interrupts
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Preemptions and multi-level interrupts are crucial for real-time systems.

They also make system highly concurrent and complex



Concurrency & Preemption in
Previous work

* sel4 [klein et al. 2009 ..]
* Mostly sequential
e Limited support of interrupts at fixed program points

* Verisoft [Rieden et al. 2007 ...]
* Kernel is sequential

* \/erve [Yang & Hawblitzel. PLDI 2010]
* Allows preemption, but no nested interrupts
* Mostly about safety, limited functionality verification

* CertiKOS [Gu et al. 2015, Chen et al. 2016, Gu et al. 2016]
* Evolving: sequential = limited interrupts = multicore
* Still no preemption



Concurrency & Preemption in
Previous work (2)

e eChronos OS [Andronick et al. 2015, 2016]
* Supports preemption and nested interrupts
* But verification at the model level only
* Verifies scheduling invariants, no API correctness



Challenges for Verifying
Preemptive OS Kernels

* Verifying concurrent programs is difficult
* Non-deterministic interleaving

Owicki-Gries (1976)
Rely-Guarantee (1983)

L (2004) Bell-al (2010)
SAGL (2007) Bornat-al (2005) RGSep (2007)
Deny-Guarantee (2009) Gotsman-al (2007)
LRG (2009) RSL (2013)
CAP (2010) Jacobs-Piessens (201 1)
HLRG (2010)
RGSIm (2012)
HOCAP (2013) SCSL (2013)
Liang-Feng (2013) TaDA (2014)
CaReSL (2013) ICAP (2014) FTCSL (2015)
| ColLoSL (2015) FCSL (2014)
GPS (2014) Iris (2015)
Iris 2.0 (2016)

[Brookes & O’Hearn 2016], courtesy of llya Sergey



Challenges for Veritying
Preemptive OS Kernels

* Verifying concurrent programs is difficult

A natural correctness

* Verifying concurrent kernels is | Si=e 60 085 G E
even more challenging

* More difficult to establish refinement with concurrency

* Theories not fully developed until recently
[Turon et al. POPL'13, ICFP’13] [Liang et al. PLDI’13, CSL-LICS’14]

e Kernel-level preemption can be more complex than
multi-tasking/multi-processor concurrency



Kernel-level preemption can be more complex than
multi-tasking/multi-processor concurrency

Handler 1 Handler O
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Interrupt management is now a verification target:
lower abstraction layer and non-uniform concurrency model

More low-level details:
e.g., can context switch only when there are no nested interrupts



This talk

* Verification framework for preemptive OS kernels
* Refinement reasoning about concurrent kernels
* Multi-Level nested interrupts and preemption

 Verification of key modules of a commercial OS kernel
MC/OS-1l in Coq

Micripm r_} OS'I I

The Real-Time Kernel

Embedded Software.

The first mechanized verification of
a commercial preemptive OS kernel.

[Xu et al. CAV’16]



Outline

* Verification Framework
e System modeling
* CSL-R: Program logic for refinement & multi-level interrupts
* Coq tactics

e Verifying uC/OS-Il



OS Correctness

* OS provides abstraction for programmers
e Hides details of the underlying hardware
* Provides an abstract programming model

* OS Correctness : refinement between high-level
abstraction and low-level concrete implementation



OS Correctness
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Contextual Refinement

all applications
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Contextual Refinement as OS API Correctness

O coie S I
VA. ObsBeh(A[O]) c ObsBeh(A[S])

The set of observable
behaviors

With some
assumptions about A

A: Application O: Concrete Impl. of OS API
S: Abstract Prim.



Contextual Refinement as OS API Correctness

But OS correctness is more than API correctness:

Correctness of runtime services, e.g., scheduler
(not exported as an API)

Whole system properties,
e.g., isolation and security, real-time properties, ...

Cannot be specified as abstract API primitives!

How to specify their correctness?



Runtime services and Sys. Props

Runtime: specified as part of the high-

level language semantics (e.g., scheduling)
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Runtime services and Sys. Props

Whole system properties:
specified as trace properties of
all apps (with high-level views)

Proved at high-level only,
propagated to low-level
through
contextual refinement!

Applications

High-Level
Language

Low-Level
Language

Low-Level Concrete

P High-Level
Implementations

Abstract Primitives




Outline

* OS Correctness Specification

e System modeling
* CSL-R: Program logic for refinement & multi-level interrupts
* Coq tactics

e Verifying uC/OS-Il



Our Verification Framework
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Our Verification Framework
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The Low-Level Language

—

L:=C]| Pr | LL |-

C:= whilee{C}| ife{C1}{C2}|f(e) | e=e]| -

e:=& | *e | ele] | eid | ...




The Low-Level Language

pts management and context switch

/* Disable interrupts*/

#
0OSCtxSw: # Task switching from task level

pushfl

pushal # Save current task's context

mov OSTCBCur, %ebx

mov %esp, (%ebx) # OSTCBCur->0OSTCBStkPtr = ESP

call OSTaskSwHook # Call user defined task switch hook

mov OSTCBHighRdy, %eax # OSTCBCur <= OSTCBHighRdy

mov %eax, OSTCBCur

mov OSPrioHighRdy, %al #0

mov %al,OSPrioCur

mov OSTCBHighRdy, %ebx # ESP BHighRdy->0STCBStkPtr

mov (%ebx),%esp

popal

popfl

ret # Return to new task
t = ~

Pr::=epcrt | excrt | switch| ...

fine OS ENTER CRITICAL() _ asm Y ("pushf \n\t cli")
fine OS EXIT CRITICAL() __asm__ ("popt") /* Enable interrupts?*/



Semantics

Small-step, even for expressions:
Try to be faithful to the granularity of machine-code

eval x
Interrupt handler:

eval y . -
(x+y)/2 = eval (x+y) % y=y+2
eval (x+y)/2

Semantics similar to CompCertTSO [sevcik et al. 2011]
(but is interleaving semantics instead of TSO model)



Our Verification Framework
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High-Level Language

High-level API
specification language

H:=C|S|HH]|....

S:=sched |y(V)|S;S|S+S | -

explicit
scheduling points




High-Level Language

H:=C|S|HH]|....

S:=sched |y(V)|S;S|S+S| -

abstract atomic transitions

(over the abstract kernel states)



Example

encrt

t void OSTimeDly (INT16U ticks)

{_asm_("pushf \n\t cli")
[*Disable interrupts*/ 0){
OS ENTER_CRITICAL();

Suspend the current thread,

and remove it from the
OS_EXIT_CRITICAL(); READY thread queue

{ __asm__("popf”) _Sc:hed()\
[*Enable interrupts*/

return;
l 1 call scheduler

excrt




Example

Low-level Code VS. High-Level Spec
void OSTimeDly (INT16U ticks)
{
if (ticks > 0) { ticks <=0

OS_ENTER_CRITICAL();

} +
OS_EXIT_CRITICAL(): w0k3>0;

OS_Sched(); «— Ydly(tICkS);
} sched

return;

}




System Model

* Low-level impl. O: (n,, 6, 1;)
* N, : APl implementations
* 0 : Interrupt handlers
* 7; : Internal functions

* High-level spec. S: (o, €, y)
* ¢ : APl specs. (high-level primitives for APIs)
e ¢ . Abstract events (high-level primitives for int. handlers)

* x. Abstract scheduler
e Scheduling policy can be customized by instantiating x



Svstem Model

Runtime services and Sys. Props

Runtime: specified as part of the high-
level language semantics (e.g., scheduling)

Applications

High-Lewvel

Verified through
refinement

Ahstract Primitives

* x. Abstract scheduler
e Scheduling policy can be customized by instantiating x
* Shows abstractions for runtime

or APIs)
tives for int. handlers)



System Model

* Low-level impl. O: (n,, 0, n;)
* N, : APl implementations

* O : Interrupt handlers
* 1, : Internal functions (Mar 0, M) Scoe (@) €5 )

Verification goal:

* High-level spec. S: (o, €, y)
* ¢ : APl specs. (high-level primitives for APIs)
e £ . Abstract events (high-level primitives for int. handlers)

* x. Abstract scheduler
* Scheduling policy can be customized by instantiating x
* Shows abstractions for runtime



Outline

* OS Correctness Specification

e Verification Framework
e System modeling

* Coq tactics

e Verifying uC/OS-Il
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Program Logic for
Refinement and Multi-Level Interrupts

* Relational program logic for simulation/refinements
[Liang et al. PLDI’13, CSL-LICS’14]

 Ownership-Transfer semantics for interrupts
[Feng et al. PLDI'08]

* Combining the two: CSL-R for refinement reasoning
with multi-level interrupts



Refinement Verification via Simulation

A
call, ret

[
High (A[S]): o—©@

\

< <

call
Low (A[O]): &—0—@
\




Simulation with Interrupts & Multitasking

call, ret

High (A[S]): O >0—>@

Y

< /7 S

' @)
call re

Low (A[O]): @—6—® w&».—»o > s S50
IRCi/ ‘\iret
Interrupt handler: >@—>@

switcy i switch
Another task: >@

How to do compositional verification?




Simulation with Interrupts & Multitasking

call, ret e
High (A[S]): O : —0—0@

Y

S
: o
call

re
Low (A[O]): &—6—@ mitw‘—w 0—0—0

Use invariant “I” to
specify non-deterministic
interference

<

Interrupt handler:

Another task:




Simulation with Interrupts & Multitasking

call, ret

High (A[S]): O >0—>@

Low (A[O]): @

Env. steps

Adapted from RGSim [Liang et al. POPL’12] and
the relational program logic [Liang et al. PLDI'13, CSL-LICS 14]



Program Logic for Simulation
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Program Logic for Simulation

Remaining high-level code

* Judgement that needs to be refined

| = {P*LISI} ¢ {a*[|lend][] }

—————————————————————————————————————————————————————————————————————————————————————————————

. High-Level S High-Level
- abstract primtive abstract states

VI

————————————————————————————————————————————————————————————————————————————————————————————————

Low-Level Low-Level
concrete code C concrete states




Program Logic for Simulation

No remaining high-level

* Judgement code (refinement is done)

| = {P*LISI} c {a*[|lend][] }

—————————————————————————————————————————————————————————————————————————————————————————————————

. High-Level S High-Level
- abstract primtive abstract states

—————————————————————————————————————————————————————————————————————————————————————————————————

Low-Level Low-Level
concrete code C concrete states




Program Logic for Simulation

Relational assertions for

e Judgement pre-/post- condition

| = {pZ{ISI} C {(1* [lend]] }

T~

___________________________________________

. High-Level S High-Level
- abstract primtive abstract states

_______________________________________________________________________________________________

Low-Level Low-Level
concrete code C concrete states




Program Logic for Simulation

e Judgement
| = {P*[ISI]} ¢ {a*[|end]] }

___________________________________________

. High-Level S High-Level
- abstract primtive abstract states

_______________________________________________________________________________________________

Low-Level Low-Level
concrete code C concrete states




Soundness
If

| = {P*LISI} c {a*[|lend][] }

then Cis simulated by S, ...



An Example

void Add() {

OS_ENTER_CRITICAL();
< CNT++ >

IA

Count ++;

OS_EXIT_CRITICAL();
J

| ::=3v. Count—»> v *CNT=v



An Example

[< CNT++ >

OS_ENTER_CRITICAL(); Ownership transfer

[< CNT++ >]
ﬁ Unfold |

Count ++ ;
[< CNT++>] Count-v+1
‘ ‘ Execute high-level code
[<end>] Count—v+1
) Fold |

OS_EXIT_CRITICAL();

Ownership transfer




An Example

[< CNT++ >
OS_ENTER_CRITICAL();

Count ++ ; The code refines
<CNT++>

OS_EXIT_CRITICAL();



An Example

[< CNT++ >
OS_ENTER_CRITICAL();

[< CNT++>] Count—>v

Count ++ ;

[< CNT++>] Count-v+1
Execute high-level code

-
-

[<end>] Count—v+1

0S_EXIT_CRITICAL();

[<end>]



An Example

0S_ENTER_CRITICAL(); Abstract consequence rule:
p*[S]==>r*[ST HK{r*[ST}C{q}
F{p*[SI}C{q}
Count ++ ;

[< CNT++>] Count-v+1
Execute high-level code

-
-

[<end>] Count—v+1

p==>q iff Y(c,%,9)|=p,
32, 5). (5, 5) >* (2, §)
[<end>] Ao, 2, 8) |=q,

0S_EXIT_CRITICAL();



An Example

[< CNT++ >
OS_ENTER_CRITICAL(); Ownership transfer

[< CNT++ >]

Count ++; .
Interrupt reasoning

OS_EXIT_CRITICAL();

Ownership transfer



Interrupt Reasoning

Program invariant [O'Hearn CONCUR’04]

There is always a partition of resource among(concurrent entities)and each
concurrent entity only accesses its own part

Tasks and interrupt

But note: handlers

The partition is dynamic: ownership of resource can be dynamically
transferred.

Interrupt operations can be modeled as operations that trigger resource
ownership transfer. [Feng et al. PLDI'08]



Ownership-Transfer Semantics

. Interrupt
for Single-Level Interrupt disabled

enabled IF=1 lo

IF=0 T
cli

Task Handler 0
Sti
B =0 <—— [B [ B0 |
/ Y
l0

Y
l0

lo{p} cli {p * 10} lo |- {p * Io} sti {p}



Memory Model for Multi-Level Interrupts

IN IN-T ... P |1 lo

A A A A A
\ ) A A )

Resource BN | BN1 | ... B2 B1 Bo

Task N-1  =-- 2 1 0

»

Lowest Priority Highest Priority

* Higher-priority handler has priority to select its required resource
* N blocks are assigned to N interrupt handlers

* Each well-formed resource block is specified by a resource invariant



Ownership--
Multi-Level
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ransfer Semantics for
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IF=1
ISR=[101000]

I

T Bs B4 B3 B2 B1 Bo

!

IF=0
ISR=[101000]

T Bs B4 B3 B2 B1 B
ISR(K) = 1

Inference Rules for
Interrupt Operations

/

| - {[ISR, 1, K] *p } cli { [ISR,0,kI* p*|1[0... k-1] |}




S

Verifying internal Verifying kernel Verifying interrupt
functions APIs handlers

Top Rule for Proving O <
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abstrar’ Vitives for
abstract scheduler

interrupt handlers internal functions



Outline

* OS Correctness Specification

e Verification Framework
e System modeling

e CSL-R: Proiram Ioiic for refinement & multi-level interruits

e Verifying uC/OS-Il



Our Verification Framework
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Coq Tactics for Automation Support

e Verification condition generator : hoare forward
e Automatically select and apply the inference rules

 Assertion entailment prover : sep auto
e Automatically prove “p=>q”

* Domain specific solvers : mauto ...

Ux.x <64 2 x>3<8; Yxx<8—=(xg3)&/ =0



Coq Tactics for Automation Support

* To reduce the proof efforts

* To hide the underlying details of the verification
framework

* To prove domain specific propositions

The ratio of Coq scripts to the verified C is around 27:1

lots of space for improvement



Outline

* OS Correctness Specification

* Verification Framework
e System modeling
* CSL-R: Program logic for refinement & multi-level interrupts
* Coq tactics



uC/OS-l

* A commercial preemptive real-time multitasking OS kernel
developed by Micrium. Micripm os_ll
o ORI L} The Real-Time Kernel

* 6,316 lines of C & 316 lines of assembly code.

* Multitasking & Multi-Level interrupts & Preemptive priority-
based scheduling & Synchronization mechanism

* Deployed in many real-world safety critical applications
* Avionics and medical equipments, etc.



Verifying uC/OS-l
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Frequently Used APls :
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Verified APIs : [
APIs

Initialization OS_Meminit
0S_QInit

OS_Flaglnit

OS_InitMisc

; . covers 68% of the IR G o]

handler

OS_InitTCBLIist
OS_InitEventList
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Proving Priority Inversion Freedom

: CSL-Style Refinement-Based Priority inversion
Relational Program Logic freedom of mutex in

nC/0s-li

Runtime services an
Whole system properties: .
specified as trace properties of Proved at high-level only, PIF of M
all apps (with high-level views) Rrapagatedta low:level or Mutex
through
contextual refinement!
Assembly
R Primitives
High-Laval
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Low-Level vel Language
v N taa———— ework




Bugs found in uC/OS-II

* Priority Inversion Freedom in Mutex
* Use a simplified priority ceiling protocol



Limitation of Mutex

LHC/OS-IW

The Real-Time Kernel

PUs Download How to Buy

Mutual exclusion semaphores with built-in priority

ceiling protocol to prevent priority inversions

« Delivered with complete, clean, 0% ANSI C source code with in-depth documentation.

« Mutual exclusion semaphores with built-in priority ceiling protocol to preve@

« Timeouts on ‘pend’ calls to prevent deadlocks

Up to 254 application tasks (1 task per priority level), and unlimited number of kernel objects
« Highly scalable (6K to 24K bytes code space, 1K+ bytes data space)

* Very low interrupt disable time

Third party certifiable



Bugs found in nC/OS-II

* Priority Inversion Freedom in Mutex
* Use a simplified priority ceiling protocol
* May cause priority inversion with nested use of mutex!
* Fixed in nC/OS-llI

* Concurrency bug (atomicity violation)
INT8U OSTaskChangePrio (INT8U oldprio, INT8U newprio)
* May lead to access of invalid pointers
* Found in pC/0OS-Il v2.52 (the version we verified)
* Fixed in uC/OS-II v2.9
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D. Verifying key modules of uC/OS-II

| B. Refinement-Based Verification |
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Refinement-Based Verification Framework

225,000
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Time cost: 6 person-years

Basic framework design and impl.

the other module® (3000 loc)

4
First module: message queue (750 lines of C) 1
1
6

Debugging and fixing framework,
specifications, tactics, etc.

Verification can be much faster with
stable framework, tools and libraries

http://staff.ustc.edu.cn/~fuming/research/certiucos/



Conclusion

 Contextual refinements:
a natural correctness formulation for OS kernels

* Verification framework for preemptive kernels
e CSL-R: Concurrency refinement + hardware interrupts

* Verification of uC/OS-ll
* Commercial system independently developed by third-party



Limitations & Future Work

* No termination proofs
* Relatively simple, can be done in logic or using tools

* Assembly and compiler are not verified
* Ongoing work

* No separate addr. space and isolation
* No real-time properties
 More whole-system properties, in addition to PIF

* Improvements for automation (better tools and libs)
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